Mechanical ventilation-induced apoptosis in newborn rat lung is mediated via FasL/Fas pathway.

نویسندگان

  • Andreas A Kroon
  • Veronica Delriccio
  • Irene Tseu
  • Brian P Kavanagh
  • Martin Post
چکیده

Mechanical ventilation induces pulmonary apoptosis and inhibits alveolar development in preterm infants, but the molecular basis for the apoptotic injury is unknown. The objective was to determine the signaling mechanism(s) of ventilation (stretch)-induced apoptosis in newborn rat lung. Seven-day-old rats were ventilated with room air for 24 h using moderate tidal volumes (8.5 ml/kg). Isolated fetal rat lung epithelial and fibroblast cells were subjected to continuous cyclic stretch (5, 10, or 17% elongation) for up to 12 h. Prolonged ventilation significantly increased the number of apoptotic alveolar type II cells (i.e., terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling and anti-cleaved caspase-3 immunochemistry) and was associated with increased expression of the apoptotic mediator Fas ligand (FasL). Fetal lung epithelial cells, but not fibroblasts, subjected to maximal (i.e., 17%, but not lesser elongation) cyclic stretch exhibited increased apoptosis (i.e., nuclear fragmentation and DNA laddering), which appeared to be mediated via the extrinsic pathway (increased expression of FasL and cleaved caspase-3, -7, and -8). The intrinsic pathway appeared not to be involved [minimal mitochondrial membrane depolarization (JC-1 flow analysis) and no activation of caspase-9]. Universal caspases inhibition and neutralization of FasL abrogated the stretch-induced apoptosis. Prolonged mechanical ventilation induces apoptosis of alveolar type II cells in newborn rats and the mechanism appears to involve activation of the extrinsic death pathway via the FasL/Fas system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CALL FOR PAPERS Translational Research in Acute Lung Injury and Pulmonary Fibrosis Mechanical ventilation-induced apoptosis in newborn rat lung is mediated via FasL/Fas pathway

Andreas A. Kroon, Veronica DelRiccio, Irene Tseu, Brian P. Kavanagh, and Martin Post Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Canada; Department of Pediatrics, Erasmus MC-Sophia, Rotterdam, The Netherlands; Departments of Critical Care Medicine and Anesthesia, Hospital for Sick Children, University of Toronto, Toronto, Canada; Departm...

متن کامل

Epithelial cell apoptosis by fas ligand-positive myofibroblasts in lung fibrosis.

The Fas/Fas ligand (FasL) apoptotic pathway has been shown to be involved in bleomycin-induced lung fibrosis. We examined the hypothesis that myofibroblasts from fibrotic lungs possess a cytotoxic phenotype that causes apoptosis of epithelial cells via the Fas/FasL pathway. We show in vivo epithelial cell apoptosis and associated upregulation of Fas and apoptotic Fas pathway genes in epithelial...

متن کامل

Drug-induced apoptosis in lung cnacer cells is not mediated by the Fas/FasL (CD95/APO1) signaling pathway.

Anticancer drugs exert at least part of their cytotoxic effect by triggering apoptosis. We previously identified chemotherapy-induced apoptosis in lung cancer cells and suggested a role for p53 alternative or complementary pathways in this process. Recently, a role for the Fas/FasL (CD95/Apo1) signaling system in chemotherapy-induced apoptosis was proposed in some cell types. In the present wor...

متن کامل

Hyperoxia-induced apoptosis and Fas/FasL expression in lung epithelial cells.

Alveolar epithelial apoptosis is an important feature of hyperoxia-induced lung injury in vivo and has been described in the early stages of bronchopulmonary dysplasia (chronic lung disease of preterm newborn). Molecular regulation of hyperoxia-induced alveolar epithelial cell death remains incompletely understood. In view of functional involvement of Fas/FasL system in physiological postcanali...

متن کامل

Bleomycin initiates apoptosis of lung epithelial cells by ROS but not by Fas/FasL pathway.

Epithelial cells are considered to be a main target of bleomycin-induced lung injury, which leads to fibrosis in vivo. We studied the characteristics of in vitro bleomycin-induced apoptosis in a mouse lung epithelial (MLE) cell line. Bleomycin caused an increase of reactive oxygen species (ROS) resulting in oxidative stress, mitochondrial leakage, and apoptosis. These were associated with eleva...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 305 11  شماره 

صفحات  -

تاریخ انتشار 2013